Do not use a calculator for the following problems. Multiple Choice.

1. The slope of the curve $y^3 - xy^2 = 4$ at the point where y = 2 is

- A) -2 B) $\frac{1}{4}$ C) $-\frac{1}{2}$ D) $\frac{1}{2}$
- E) 2

2. The slope of the curve $y^2 - xy - 3x = 1$ at the point (0,-1) is

- A) -1
- · B) -2
- C) 1
- D) 2
- E) -3

3. The equation of the tangent to the curve $y = x \sin x$ at the point $\left(+\frac{\pi}{2}, \frac{\pi}{2}\right)$

- A) $y = x \pi$ B) $y = \frac{\pi}{2}$ C) $y = \pi x$ D) $y = x + \frac{\pi}{2}$ E) y = x

4. The tangent to the curve of $y = xe^{-x}$ is horizontal when x is equal to

- A) 0
- B) 1
- C) -1
- D) $\frac{1}{e}$
- E) none of these

5. The point on the curve $y = \sqrt{2x+1}$ at which the normal (perpendicular line) is parallel to the line y = -3x + 6 is

- A) (4,3) B) (0,1) C) $(1,\sqrt{3})$ D) (4,-3) E) $(2,\sqrt{5})$

6. The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when

- A) y=0 B) $y=\pm\sqrt{3}$ C) $y=\frac{1}{2}$ D) $y=\pm 3$ E) none of these

7. If differentials are used for computation, then the best approximation, in cubic inches, to the increase in volume of a sphere $(V = \frac{4}{3}\pi r^3)$ when the radius is increased from 3 to 3.1 in. is

- A) 11.3
- B) 11.7
- C) 12.1
- D) 33.9
- E) 39.7

8. If m_1 is the slope of the curve xy = 2 and m_2 is the slope of the curve $x^2 - y^2 = 3$, then at a point of intersection of the two curves

A) $m_1 = -m_2$ B) $m_1 m_2 = -1$ C) $m_1 = m_2$ D) $m_1 m_2 = 1$ E) $m_1 m_2 = -2$ 9. The line y = 3x + k is tangent to the curve $y = x^3$ when k is equal to

A) 1 or -1 B) 0 C) 3 or -3 D) 4 or -4 E) 2 or -2

10. A particle moves along a horizontal line according to the law $s = t^4 - 6t^3 + 12t^2 + 3$. The particle is at rest when t is equal to

A) 1 or 2 B) 0 C) $\frac{9}{4}$ D) 0, 2, or 3 E) none of these

11. If a particle moves along a line according to the law $s = t^5 + 5t^4$, then the number of times it reverses direction is

A) 0 B) 1 C) 2 D) 3 E) 4

Free Response

12. Consider the curve given by the equation $y^3 + 3x^2y + 13 = 0$.

a) Find $\frac{dy}{dx}$.

b) Write an equation for the line tangent to the curve at the point (2,-1).